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Tiny estimates of the Ne/N ratio in marine fishes:
Are they real?*a
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Theory and empirical estimates agree that the ratio of effective size (Ne) to census size (N) falls roughly
in the range 0·1–0·5 for most populations. In a number of marine species, however, genetic estimates
of contemporary Ne/N are as much as 5–6 orders of magnitude lower. Although some mechanisms
that could produce such tiny Ne/N ratios have been proposed, the subject remains controversial. This
issue is important to resolve: if Ne/N can be 10−3 or smaller, marine fish populations that are quite
large could be at genetic risk. Based on a recently-improved understanding of factors that influence
Ne and Ne/N in species with overlapping generations, this paper evaluates conditions necessary
to produce tiny Ne/N ratios in actual populations. These analyses show that although increased
longevity, fecundity and variance in reproductive success that increase with age, and increased
egg quality with age [the big old fat fecund female fish (BOFFFF) hypothesis] all reduce Ne/N,
extreme scenarios are required to reduce Ne/N below about 0·01. Therefore, tiny Ne/N ratios require
some version of Hedgecock’s ‘sweepstakes’ hypothesis, whereby only a few families reproduce
successfully. Simulations using common genetically-based estimators show that, when true Ne is very
large (≥106), a substantial fraction of point estimates of Ne/N can be 10−3 or smaller. These results
mean that tiny, genetically-based point estimates of Ne/N in large marine populations are expected
to be quite common, even when the true Ne/N ratio is ‘normal’ (∼0·1 or higher). Very large samples
of individuals can reduce, but not eliminate, this problem. The simulation results also emphasize
the importance of considering deviations from model assumptions (e.g. non-random sampling; weak
selection or migration) that may be relatively small (and hence can generally be ignored when the
signal is strong) but can lead to substantial biases when the drift signal is weak, as is likely for large
marine populations. Empirical studies of this topic need to be able to distinguish between episodes of
sweepstakes reproductive success that are ephemeral and lead to chaotic genetic patchiness, and those
that are consistent enough across space and time to produce persistent evolutionary consequences.
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INTRODUCTION

Marine species have long captured our imaginations, and this has been true of scien-
tific investigations as well as the popular media. Even before the first large allozyme
studies revealed dramatically higher-than-expected levels of genetic diversity in
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humans (Harris, 1966) and Drosophila (Hubby & Lewontin, 1966), genetic methods
were being used to gain insights into ecological and evolutionary processes in marine
fish populations (Frydenberg et al., 1965; Waples et al., 2008). Genetic studies of
marine species have explored population structure (Cross & Payne, 1978; Burton &
Feldman, 1981), larval dispersal and gene flow (Strathmann, 1978; Johnson & Black,
1984), natural selection (Tracey et al., 1975; Koehn et al., 1976; DiMichele & Powers,
1982; Gaffney, 1994), sampling and kinship (Hansen et al., 1997; Buston et al.,
2009), fishery management (Ryman & Utter, 1987), unusual life histories (Koehn
& Williams, 1978; Aarestrup et al., 2009), mating systems (Bierne et al., 1998;
Bekkevold et al., 2002), fecundity and maternal age (Berkeley et al., 2004; Hixon
et al., 2014), phylogeography (Grant & Bowen, 1998), speciation (Palumbi, 1994) and
even needle-in-a-haystack parentage assignments (Christie et al., 2010). These studies
have led to many surprises and, collectively, greatly enriched the understanding of
how natural populations function in the real world.

One important topic that remains controversial is whether marine species with high
fecundity can have effective population sizes (Ne) that are many orders of magnitude
smaller than the census size (N). Conventional evolutionary theory holds that the Ne/N
ratio should not deviate too far from 0·5 and rather special circumstances are required
to produce Ne/N as small as 0·1 (Nunney, 1993). Hedgecock (1994), however, proposed
that, through a variation of Hjort’s (1914) larval mismatch hypothesis, Ne/N in highly
fecund marine species could be very small if a typical year class of surviving offspring
is not derived randomly from the huge number of adults, but instead from only a few
families that by chance happen to produce eggs and larvae that end up at the right place
and time to allow them to survive. This idea has been referred to as the sweepstakes
reproductive success (SRS) hypothesis. Subsequently, a number of empirical studies
using indirect genetic methods obtained estimates of Ne/N in marine species ranging
from 10−3 to 10−6 or even smaller. This topic was reviewed by Hauser & Carvalho
(2008) and Hedgecock & Pudovkin (2011), and Hedrick (2005) used some simple the-
oretical models to identify scenarios that could potentially produce very small Ne/N.

This study extends these previous analyses in two ways. First, the analytical models
considered by Hedrick (2005) are extended to account for age structure and overlap-
ping generations, with the goal of identifying life history traits that can and cannot
be expected to produce low Ne/N. Second, the conditions under which commonly used
genetic methods can be expected to produce tiny estimates of the Ne/N ratio, even when
Ne is large and Ne/N is close to 1, are evaluated. Finally, experimental procedures that
can evaluate hypotheses regarding estimates of Ne/N in marine fishes are discussed.

DEMOGRAPHIC FACTORS THAT CAN PRODUCE LOW Ne/N

D I S C R E T E G E N E R AT I O N M O D E L S

Consider a marine species with a large population size (N ≥ 106). The focus is on
scenarios where Ne/N is very small. For purposes of this study, a tiny estimate of Ne/N
is defined as one that is ≤10−3. The choice of which individuals to include in N can
strongly affect the estimated Ne/N. The analyses below use the definition that is most
widely accepted in the literature: N = the number of mature adults (Nunney & Elam,
1994). In species with fixed age at maturity, this can be calculated as the number in all
age classes from age at maturity to the maximum age, 𝜔.
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Hedgecock (1994) proposed that Ne/N could be arbitrarily small if only a small
fraction of all N adults successfully reproduced (in this context, successful means
production of at least one offspring that survive to be an adult). Let Np be the num-
ber of these successful parents, so the focus is on scenarios in which Np <<N. Hedrick
(2005) quantitatively evaluated some simple scenarios of this type and here this idea
is expanded using the parentage analysis without parents (PWOP) approach of Waples
& Waples (2011). In the PWOP formulation, the standard discrete-generation formula
for inbreeding effective size is recast as:

Ne =
∑

ki − 1
∑(k2

i )∑
ki

− 1
, (1)

where ki is the number of offspring produced by the ith parent. Because parents who
produce no adult offspring (ki = 0) do not contribute to either Σki or Σ(ki

2), this
formulation shows that Ne does not depend on the total adult population size or the
number of unsuccessful parents. Nevertheless, to facilitate evaluation of Ne/N, the
connection to N will be retained. The analyses below consider how overall Ne and
Ne/N depend on the mean and variance in offspring number of these Np successful
parents.

If the population is stable, then the N total adults in generation 1 produce N adults
in generation 2 and so on. For diploid species, each of the adults must on average
contribute half the genes to each of two offspring, so overall k = 2. Considering
only the successful parents, they still contribute Σki = 2N genes to the N offspring,
so the mean reproductive contribution of the successful parents is kp = 2N∕Np.
Evaluation of Vkp = variance(ki) for the successful parents is simplified by taking
advantage of the property that a variance is the mean of the squares minus the

square of the mean. In current notation, Vkp =
∑(

k2
i

)
∕Np −

(
kp

)2
. Rearrangement

produces Σ (k2
i ) = Np [Vkp + (kp)

2
] . Consider first the scenario in which the Np

successful parents have random reproductive success, in which case Vkp ≈ kp, so

Σ (k2
i ) ≈ Npkp (1 + kp) = Np

(
2N∕Np

) (
1 + 2N∕Np

)
= 2N

(
1 + 2N∕Np

)
. Substi-

tuting into equation 1 and dropping the −1 in the numerator, since it will be trivial
compared with N, produces:

Ne ≈
2N

2N(1+2N∕Np)
2N

− 1
= 2N

1 − 1 + 2N∕Np
= Np, so

Ne

N
≈

Np

N
(2)

(assumes random reproductive success of the Np successful parents). This produces the
intuitive result that, if the Np successful parents behave like a mini Wright-Fisher ideal
population, the overall effective size of the entire population is Np and the Ne/N ratio
is just Np/N.
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This analysis can be generalized by allowing Vkp to be any multiple (𝛼) of the mean

reproductive success: Vkp = 𝛼kp. In that case, Σ(ki
2) = 2N(𝛼 + 2N/Np) and

Ne ≈
2N

2N(𝛼+2N∕Np)
2N

− 1
= 2N

𝛼 − 1 + 2N∕Np
. (3)

Situations in which Np/N is very small are of primary interest, in which case the
2N/Np term in the denominator of equation 3 will be very large, so the −1 term in the
denominator also can be ignored, producing:

Ne ≈
2N

𝛼 + 2N∕Np
, so

Ne

N
≈ 2

𝛼 + 2N∕Np
. (4)

Unless 𝛼 is very large, it also will be dwarfed by the other term in the denominator,
which again will produce the result that Ne/N ≈Np/N. For example, even if 𝛼 is as large

as kp (i.e. the variance in reproductive success is kp times the mean, where kp is a large
number), Ne is only reduced by 50%, so Ne/N ≈ 0·5Np/N.

Hedrick (2005) considered a variation of this scenario in which each of the Np
successful parents produced exactly the same (large) number of progeny. In this case,
𝛼 = 0, which again produces Ne/N ≈Np/N from equation (4). Hedrick (2005) also
showed that considering a third class of parents (those who produce exactly two
offspring each) leads to the following result:

Ne

N
≈

Np

N (1 − y)2
(5)

where y is the fraction of all N adults that produce exactly two offspring. Using some
numerical examples, Hedrick (2005) showed that Ne/N remains quite low in the pres-
ence of this third class of parents unless they make up a large fraction of the population.

To summarise, under the discrete generation model, when a small number (Np) of par-
ents dominate reproduction, the Ne/N ratio will be close to Np/N regardless how repro-
ductive success is partitioned among the successful parents and regardless whether
some other parents manage to contribute small numbers of offspring.

OV E R L A P P I N G G E N E R AT I O N S

An important limitation of the above analyses is that they implicitly assume discrete
generations and fail to consider age structure, whereas most species (and all of those
for which very small Ne/N ratios have been reported), have overlapping generations.
Overlapping generations and reproduction in >1 year or season (iteroparity) have
some important consequences for small Ne/N ratios that have not been quantitatively
evaluated before. After considering the general model developed by Hill (1972), which
assumes a constant population size, stable age structure and independence of birth and
death rates over time, the consequences of some violations of these assumptions are
evaluated.
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Hill’s model
To account for overlapping generations, the discrete-generation formula for Ne can

be modified as follows (Hill, 1972):

Ne =
4N1T

Vk• + 2
(6)

where N1 is the number of offspring produced each time period, T is generation length
and Vk• is lifetime variance in reproductive success of the N1 individuals in a cohort.
Any age up to the age of first reproduction can be used to enumerate the individuals in
a cohort, provided that reproductive success and Vk• are also based on production of
offspring of that same age. To see the effect of age at maturity on Ne/N, consider two
hypothetical species, species A with age at maturity= 1 year and species B with age at
maturity= 1+ z years. Further, assume that both species have adult lifespan=LA years,
the same annual adult survival and the same pattern of age-specific fecundity. Because
species B delays onset of reproduction, generation length for species B will be higher
by z years, while Vk• will not be affected. As a consequence Ne/N is higher in species
B than in species A. In fact, Ne/N can be >1 in species that delay maturity for many
years or reproductive cycles (Waples et al., 2013). Because interest here is on factors
that can produce tiny Ne/N ratios, it is assumed that age at maturity= 1 and that N1 is
the number of individuals in a cohort that survive to age 1 year. This does not mean
that species with delayed maturity cannot have tiny Ne/N, just that it is a little harder
than it is for species that mature at age 1 year.

Apart from age at maturity, the other key demographic traits that affect the Ne/N
ratio are: adult lifespan or longevity, which is determined by the annual survival
rate; age-specific patterns of change in survival (sx) and especially fecundity (bx),
where x indicates age, and age-specific patterns of change in Φx =Vx/bx = the ratio
of the variance to the mean reproductive success in one time period for individuals of
the same age and sex. These will be examined sequentially using the AgeNe model
(Waples et al., 2011), which calculates lifetime Vk• and Ne (using equation 6) by
grouping individuals by age at death.

In age-structured species, some individuals live longer than others and hence have
more opportunities to reproduce. This increases lifetime variance in reproductive suc-
cess; because Vk• appears in the denominator of equation (6), this (all else being equal)
reduces Ne and Ne/N. Increasing the adult lifespan, however, also increases generation
length (which appears in the numerator of equation 6) as well as the number of adults
in the population (which appears in the denominator of Ne/N), so all these factors must
be considered jointly to assess overall effects on the effective size–census size ratio.
Effects of longevity on Ne/N are isolated by considering a population that has constant
fecundity with age and constant Φx = 1, which means that (for example) all age 7 year
males have random reproductive success among themselves. This hypothetical popula-
tion also has a constant adult survival rate that produces total life spans (and maximum
ages, 𝜔) of 10, 20, 30, 40 and 50 years. The latter was achieved by defining cumula-
tive survival (lx) to be 1·0 at age 1 year and choosing constant sx values that produce
l𝜔 = 0·01 (1% survival through the maximum age) for each value of 𝜔. Corresponding
sx values for 𝜔= 10–50 were 0·600, 0·785, 0·853, 0·891 and 0·910. Results (Fig. 1)
show that, under these conditions of constant vital rates, increasing longevity reduces
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Fig. 1. The ratio Ne/N as a function of longevity (maximum age, 𝜔 years). In each case, adult survival was held
constant at a value that produced cumulative survival (lx) of lx = 0·01 at age 𝜔 years. , scenarios in
which fecundity (bx) and Φx do not vary with age; , scenarios in which bx and Φx are proportional to
age (x).

Ne/N, but the reduction is rather modest (from 0·629 with 𝜔= 10 to 0·525 with 𝜔= 50,
a decline of only 17%). Therefore, by itself increased longevity cannot be expected to
produce tiny Ne/N ratios. Unless otherwise specified, the analyses below assume that
maximum longevity is 40 years.

Although many species (such as many birds and mammals) have vital rates that
are approximately constant across their adult lifespan, the same is not true for most
marine ectotherms with indeterminate growth. In these species, older individuals are
larger and generally have higher fecundity; this increases the reproductive payoff for
individuals that survive to reproduce many times and further increases Vk•. In addition,
older females not only have more eggs, they may produce better eggs that have a higher
chance of producing a viable offspring–the ‘big old fat fecund female fish’ (BOFFFF)
hypothesis (Berkeley et al., 2004; Hixon et al., 2014). The same could potentially
be true of males. To the extent that such effects occur, they would further enhance
the reproductive disparities associated with increased longevity and fecundity that
increases with age. Because only offspring that survive to age 1 year are considered,
both increased number of eggs and increased survival of eggs for females of older
ages can be accommodated by appropriate scaling of effective age-specific fecundity.

One simple way to do this is to assume that effective fecundity (in terms of produc-
tion of offspring that survive to age 1 year) increases linearly with age, which is not
uncommon in long-lived marine fishes (Fig. 2). In the first evaluation of this general
scenario, relative fecundity was assumed to be proportional to age, while the other
vital rates were constant at sx = 0·891 and Φx = 1, with 𝜔= 40. This pattern of increas-
ing fecundity with age reduced Ne/N to 0·42, a decline of 22% from the value (0·53)
obtained when all vital rates are constant with age (Fig. 3). In a more extreme sce-
nario of this type, effective fecundity increases exponentially with age. If it is assumed
that relative fecundity doubles every year after age 1 year, Ne/N drops sharply to 0·059
(Fig. 3). This particular scenario, however, is not very plausible biologically, as it would
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Fig. 2. Pattern of change in fecundity with age for three marine species: , Atlantic cod, Gadus morhua;
, red drum, Sciaenops ocellatus; , orange cup coral Balanophyllia elegans (data are from

Waples et al., 2013).

require that a 40 year old individual produce 5× 1011 times as many offspring as an
age 1 year adult. Furthermore, although the resulting Ne/N value for this scenario is
a bit below 0·1, it is nowhere as small as the tiny values that have been reported for
some marine species in the literature. Therefore, these tiny Ne/N estimates cannot be
explained entirely by increasing fecundity with age, although this is probably a con-
tributing factor. The remaining analyses will use the more plausible scenario in which
effective fecundity is proportional to age, as in Fig. 2.

If increasing fecundity with age creates larger disparities in lifetime reproductive
success between those individuals that do and do not survive to old age, why does
not this have a larger effect on the Ne/N ratio? The answer is straightforward: shifting
more and more reproduction to older age classes also increases generation length.
Because T appears in the numerator of equation 6 and Vk• appears in the denominator,
the effects on T and Vk• largely cancel each other, leading to only modest net changes
in Ne/N.

This brings us to the final major factor that determines Ne and Ne/N: Φx. Φx has
no effect on generation length because the mean age of parents is unaffected; it only
affects the variance around the mean reproductive success. But Φx can have a large
influence on Vk• and hence Ne/N. In the next scenario, therefore, both bx and Φx were
proportional to age, as has been estimated for Atlantic cod Gadus morhua L. 1758
(Kuparinen et al., 2016). This produced Ne/N = 0·15, 63% lower than obtained when
only fecundity was proportional to age. Still, this is far above what can be considered
a tiny ratio of Ne/N.

The final series of analyses evaluated how large Φx (assumed to be fixed) must be
to produce very low Ne/N ratios. If Φ is constant at 10 for every age, Ne/N is actually
a little higher than with additive Φx, but with Φ= 1000 (variance, V = 1000 times the
mean), Ne/N drops to 3·4× 10−3, which finally is in the upper end of the range of tiny
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Fig. 3. The ratio Ne/N for hypothetical scenarios involving age-specific changes in vital rates. Ne/N was calcu-
lated from age-specific vital rates using AgeNe (Waples et al., 2011). In all scenarios, individuals matured
at age 1 year and lived to a maximum age 𝜔= 40 years with constant adult survival of sx = 0·891. In the
first three scenarios, Φx = 1 for every age. Constant, fecundity is constant with age; +b, fecundity is pro-
portional to age; expb, relative fecundity doubles each year; +b+Φ, fecundity is proportional to age, and
Φx = x; +b,Φ= 10, fecundity is proportional to age, and Φx = 10 for every age; +b,Φ= 102, fecundity is
proportional to age, andΦx = 100 for every age;+b,Φ= 103, fecundity is proportional to age, andΦx = 1000
for every age (Ne/N = 3·4× 103).

Ne/N that have been proposed for marine species. Effects of large Φ can be evaluated
more generally by taking advantage of the property (Waples et al., 2011) that, when Φ
is constant with age in a stable population, an increase in Φ by the amount ΔΦ units
causes Vk• to increase by 2ΔΦ units. A modified form of equation 6 that reflects this is:

Ne =
4N1T

Vk1• + 2ΔΦ + 2
(7)

(assumes Φ is constant with age), where Vk1• is the lifetime variance in reproductive
success when Φ is fixed at 1. Situations where Φ and hence ΔΦ are very large are of
primary interest, in which case Φ≈ΔΦ and, to a good approximation:

Ne ≈
4N1T

2Φ
=

2N1T

Φ
(8)

(assumes Φ is large and constant with age). That is, when Φ is large and constant with
age, Ne (and hence Ne/N) are inversely proportional to Φ.

This effect can be illustrated using the above example with maximum age= 40,
fecundity proportional to age and Φ fixed at 1. For this scenario, if N1 is set at
production of 10 000 age 1 year recruits year−1, adult N = 90 835, T = 15·5 years and
Vk• = 14 · 4, leading to Ne = 37 760 and Ne/N = 0·416. Substituting into equation 8 to
evaluate effects of large Φ produces this:

Ne

N
≈

2N1T

NΦ
= 2 × 10 000 × 15·5

90 835Φ
≈ 3·4

Φ
. (9)
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With Φ= 1000, this approximation yields Ne ≈ 3·4× 10−3, in good agreement with the
exact value shown in Fig. 3 calculated using equation (6). It is easy to see that Ne/N
in species with overlapping generations can be arbitrarily small if Φ is assumed to be
arbitrarily large. A good order-of-magnitude approximation is the following:

Ne∕N ≈ 1∕Φ (10)

It is worth noting here that Φ represents the ratio of the variance to the mean reproduc-
tive success for a single age class of one sex. Φ can only be very large if the number
in the age–sex class (Nx) is very large. For long-lived iteroparous species, Φ generally
will be constrained to be ≤Nx, although this will not always hold for older age classes
if fecundity increases steeply with age.

A simple example illustrates the biological meaning of large values of Φ. Consider
a large marine fish population that each year produces N1 = 106 recruits that survive to
age at maturity. If annual mortality is constant at d = 0·15, the total number of adults
will be approximately N =N1/d = 6·67× 106, so the mean genetic contribution in each
time period by all adults will be k = 2N1∕N = 2d = 0·3. Considering a single age class
and assuming that the number of adults in the age class is 5% of the total (which would
be typical for a relatively long-lived species), then Nx =N/20= 3·33× 105. Assuming
these parents have the same mean reproductive success as the overall population, they
would produce 105 offspring that survive to age at maturity. Now further assume that
of the Nx potential parents of age x years, only Np successfully reproduce, with random
variation in offspring number. For Np = 3333, 333, 33 or 3 (which represent a fraction
10−2, 10−3, 10−4 or 10−5 of all Nx potential parents), the resulting Φx values are 30·7,
301, 3031 and 33 334, respectively (Table I). Therefore, to produce Φx ≈ 1000 (as in
the example above) requires that only about one in 1000 potential parents reproduces
successfully. For realistic scenarios involving long-lived iteroparous species, Φx is the
same order of magnitude as the inverse of the fraction of potential parents that suc-
cessfully reproduce (Φx ≈Nx/Np). Using the Ne/N ≈ 1/Φ approximation noted above,
this means that with overlapping generations, constant vital rates and sweepstakes
reproduction, the effective size–census size ratio is approximately equal to the fraction
of potential parents that successfully reproduce in a given time period (Ne/N ≈Np/Nx).
This is similar to the result derived above for discrete generations, except that the
Np/N ratio applies to reproduction by each year class in 1 year or season rather than a
full generation.

Variations to Hill’s model
Variable recruitment: although Hill’s model assumes that population size is constant

and age structure is stable, the method is robust to random demographic stochasticity
(Waples et al., 2011, 2014). Furthermore, Felsenstein (1971) showed that his related
model is still accurate if a population increases or declines at a steady rate. Some
long-lived marine species, however, have highly variable recruitment, with little or no
successful reproduction in many years and occasional large pulses of strong recruit-
ment. If successful recruitment occurs less frequently than once per generation, the
population is not likely to be viable in the long term. Taken to a plausible extreme, there-
fore, this type of scenario can be evaluated by assuming that the population has a strong
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Table I. Relationship between age-specific values of Φx and the number of successful parents
(Np) producing a fixed number of progeny in one time period. All scenarios consider a typical
age class of Nx = 3·33× 105 adults that produce 105 progeny each time period, for a mean repro-
ductive success of k = 0·30. In each column, a different number of successful parents is assumed
to produce all the offspring, with random variation in reproductive success. kNP = 2 × 105∕Np is
the mean genetic contribution of the Np successful parents, Vk is overall variance in reproductive

success among all Nx potential parents and Φx = Vk∕k is the ratio of the variance to the mean
reproductive success for individuals of age x years

k Nx (×105) Progeny Np kNp Vk Φx NpNx

0·30 3·33 105 3333 30·0 9·2 30·7 10−2

0·30 3·33 105 333 300·3 90·3 301·0 10−3

0·30 3·33 105 33 3030·3 909·3 3031·0 10−4

0·30 3·33 105 3 33 333·3 10 000·2 33 334·0 10−5

recruitment once per generation, with zero successful reproduction in the intervening
years. But this is just a discrete-generation model, with consequences as discussed
above. Therefore, variable recruitment by itself is not likely to lead to tiny Ne/N ratios,
although it could if the Np individuals responsible for the successful recruitment are a
tiny fraction of all adults.

Persistent individual differences: the assumption in Hill’s model that survival and
reproduction are independent across time is necessary to make the analysis tractable
but unrealistic for many populations. Intuitively, Ne and Ne/N should be reduced if
the same individuals are consistently good or bad at reproducing across multiple time
periods, and Lee et al. (2011) showed that this indeed is the case, although the effect
was rather modest: in the most extreme scenario they considered, Ne/N was reduced by
less than one order of magnitude (from about 0·5 to 0·1–0·2). Is this issue a weak link
in the SRS hypothesis; i.e. is it necessary to assume that the same very few individuals
are sweepstakes winners year after year after year? This seems highly implausible,
given Hedgecock’s (1994) concept of the sweepstakes winners being the parents that
(by luck) just happened to deliver their families of eggs or larvae to one of the few
places in the ocean where they could survive and grow. This is not a serious limitation
for the SRS hypothesis, however, for the following reason.

Consider two scenarios for a long-lived species in which only a small number of par-
ents successfully reproduce each year: first, the same Np parents are successful every
year across a generation; second, each year the Np successful parents are randomly cho-
sen from the population as a whole. In scenario 1 the effective size per generation will
be approximately Np, in which case the consequences for Ne/N are the same as they are
in the discrete generation model. In scenario 2, assuming the total population of adults
is very large, the successful parents that are randomly chosen each year are expected to
be nearly or completely non-overlapping (i.e. the chances that any individual will win
the sweepstakes more than once is very small). In that case, the number of successful
parents over a period of a generation (and hence the approximate effective size per
generation) will be approximately TNp. Given the typical range of generation lengths
for long-lived marine species (10–20 years or so), assuming a complete turnover
of successful parents each year would only increase Ne/N by roughly one order of

Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Journal of Fish Biology 2016, 89, 2479–2504



T I N Y Ne /N R AT I O S 2489

magnitude. This would not preclude tiny Ne/N values, provided that the fraction of
successful spawners each year is sufficiently small.

Intermittent breeding: the converse of positive correlations between reproductive suc-
cess of individuals across time is inverse correlations caused by intermittent or skip
breeding, which occurs when energetic costs of reproduction (including any associated
migrations) reduce the chances that an individual that reproduces in 1 year will repro-
duce in a subsequent year (Shaw & Levin, 2013). It is common for females of large
mammal species to skip breeding for one or more cycles after giving birth, and the same
can be true for many other species and, occasionally, for males as well. Although skip
breeding reduces the number of adults available to breed in any given year [and hence
can sharply reduce the effective number of breeders per year (Nb) in some species],
this phenomenon serves to reduce lifetime Vk• and hence raise Ne/N slightly (Waples
& Antao, 2014). Because the effect on Ne is small and expected to be positive, whether
a species employs skip breeding is not likely to have an appreciable effect on opportu-
nities for tiny Ne/N ratios.

To summarise, all else being equal, increasing longevity reduces Ne/N, but by itself
the effect is rather modest. Stronger reductions can occur if a long adult lifespan is
coupled with fecundity and Φx that increase with age, but plausible scenarios of this
type, even those that incorporate the BOFFFF hypothesis, are still unlikely to pro-
duce Ne/N smaller than about 10−1. Similarly, some life history variants such as vari-
able recruitment or persistent individual differences in reproductive success can reduce
Ne/N, but again their effects are expected to be relatively modest. In species with over-
lapping generations, tiny Ne/N ratios are only possible if the variance in reproductive
success of same-age, same-sex individuals is orders of magnitude higher than the mean.
This, in turn, is possible only if just a relatively few individuals are responsible for most
of the successful reproduction. Therefore, although age-structure and iteroparity can
influence effective size in predictable ways, these life-history traits cannot by them-
selves produce tiny Ne/N ratios; that still requires some variation of Hedgecock’s SRS
hypothesis. With sweepstakes reproduction and overlapping generations, if the same
adults consistently produce most of the offspring, Ne/N will approximately equal the
fraction of potential adults that successfully reproduce in a given year, just as in the
discrete-generation model. If (mostly) different parents are sweepstakes winners each
year, Ne/N will be increased by a factor equal to the generation length, which will be
roughly one order of magnitude for many marine species. Because very little is known
about variance in reproductive success of individuals of the same age and sex, collecting
empirical data of this type would considerably improve the understanding of SRS.

ESTIMATING Ne AND Ne/N

E S T I M AT I N G N

In a computer model, it is easy to count the number of individuals in the population,
but that is not the case in the real world, particularly for large marine populations that
can include millions or even billions of individuals that are (at best) difficult to observe
directly. Also, calculation of adult N ideally would account for the fraction in each age
class that are sexually mature. Again, this is easy in a computer model but much more
challenging in real-world populations and this contributes uncertainty to estimates of
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N. Most of what follows focuses on estimates of Ne, but it is important to remember
that estimating Ne/N involves separate estimation of two parameters, each of which
presents major challenges for marine species.

E S T I M AT I N G Ne

Practical considerations
All of the tiny estimates of contemporary Ne/N for marine species are from indirect

genetic methods that use a genetic index that is expected to be a function of 1/Ne.
Most of the estimates are from the temporal method (which requires two or more
samples spaced in time) or the linkage disequilibrium (LD) method, which uses single
samples. The respective genetic indices and their expected values are as follows:

E (F) ≈ t
2Ne

+ 1
S

(11)

E
(
r2
)
≈ 1

3Ne
+ 1

S
. (12)

In the above, S is the number of individuals in a sample, F is the standardized variance
in allele frequency between two temporal samples, t is the number of generations
between temporal samples and r2 is the squared correlation of alleles at different
gene loci. The basic approach of these moment-based methods is straightforward: (1)
develop theoretical expectations for contributions of drift and sampling error to the
genetic index of interest (as in the equations above); (2) compute the overall index; (3)
subtract from that the expected contribution from sampling error; (4) use the result to
estimate Ne using a simple rearrangement of equation 11 (temporal method; Waples,
1989) or equation 12 (LD method; Hill, 1981).

Inspection of equations (11 and 12) makes it clear why estimating effective size in
large populations is very challenging with indirect genetic methods. For a sample size
that is common for marine species (S= 50), the contribution of random sampling error
to the genetic index will dwarf the signal from drift unless true Ne is very low (Fig. 4).
Vastly increasing sample size to S= 5000 can substantially improve performance if true
Ne is no larger than about 104, but even such large samples are ineffective in reducing
the signal-to-noise ratio problem if true Ne is as large as 106 (Fig. 4). When Ne >> S,
the crucial step in the estimation procedure is (3), because a small error in correct-
ing for sampling error can have a huge effect on N̂e. Even if the theoretical sampling
terms in equations (10 and 11) are exactly correct and all model assumptions are met,
the problem remains that both genetic drift and sampling error are random stochastic
processes and the mean values only approach the theoretical expectations with a great
deal of replication. For example, to get within one order of magnitude of the expected
drift signal from LD when true Ne = 106, after accounting for sampling error a user
must find a mean value of r2 between 0·00000003 and 0·00000333. For estimating
Ne in very large populations, this means that the genetic index must be based on very
large amounts of data (samples of individuals or gene loci) to provide any hope of high
precision.

These challenges can be illustrated using simulated data for populations with a wide
range of true Ne values and applying the estimators and amounts of data that were
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Ne = 100 Ne = 10 000

Ne = 10 000 Ne = 1 000 000

S = 50 S = 5000

Fig. 4. Relative contributions of genetic drift ( ) and random sampling error ( ) to the standardized
variance in allele frequencies (F) between samples taken three generations apart. Results are based on
equation 11 for the standard temporal method with plan II sampling, assuming sample sizes of S= 50 or
S= 5000 individuals and Ne as shown.

commonly used to generate published tiny estimates of Ne/N. One hundred diallelic,
single nucleotide polymorphism (SNP) loci were simulated in ideal populations of con-
stant size Ne =N = 100 to 1 000 000 for a burn-in period of five generations (enough to
reach equilibrium for LD; Waples, 2005). An initial sample of S= 50 individuals was
taken using Plan II sampling (Nei & Tajima, 1981; Waples, 1989) and a final temporal
sample was taken after simulating an additional three generations of drift. The second
temporal sample was also used for the LD estimates. For some scenarios, 1000 loci
were simulated, or samples sizes of S= 200, 1000 or 5000 were used. Simulations
using Ne = 107 were also conducted for the temporal method only (memory limitations
precluded generating such large matrices for LD analyses). Finally, infinite Ne was
modelled by randomly choosing genotypes for LD samples (equivalent to having
an infinite number of parents) and by taking two replicate samples from the same
population for the temporal estimates. [Simulations were conducted in R
(www.r-project.org) using code that is available from the author on request.]

Diallelic loci are easier to simulate than the microsatellites used in most of the pub-
lished studies, but the 100 SNP loci modelled here provide approximately the same
amount of information as 10 moderately variable microsatellites [the 11 microsatellite
studies reviewed by Hauser & Carvalho (2008) used a mean of eight loci]. Samples
were used to estimate Ne using both the standard temporal method (using Nei and
Tajima’s estimator of F) and the bias-corrected LD method (Waples, 2006); in addition,
a combined estimate was computed as the harmonic mean of the two estimates.

For small populations (true Ne = 100), both methods are largely unbiased and have
good precision, as has been reported elsewhere. Almost no estimates were below 50
and very few were above 200 [Fig. 5(a)]. The situation changes dramatically, however,
if true Ne is 100 times as large (Ne = 10 000): about half the estimates from each method
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Fig. 5. Frequency distribution of estimates of effective population size (N̂e) for simulated data where (a) true
Ne ( )= 100 (using 1000 replicates), (b) true Ne = 104 (500 replicates), (c) true Ne = 106 (500 replicates)
using: , the standard temporal method, computed for samples taken three generations apart; , the
linkage disequilibrium method; , the harmonic mean of the two estimates. All results are for samples
of S= 50 individuals genotyped for 100 diallelic (single nucleotide polymorphism, SNP) loci.
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are infinitely large and most of the remainder are <25% of the true value [Fig. 5(b)].
This bimodal pattern to N̂e is even more dramatic when true Ne is 106: over half the
estimates are infinite, while most of the rest are in the hundreds or low thousands, down-
wardly biased by three to four orders of magnitude [Fig. 5(c)]. Almost no estimates
are within an order of magnitude of the true Ne. It might be expected that combining
estimates from the two methods would lead to greater precision, but there was little
difference in performance of the combined and the LD estimates in this example.

Note that as true Ne gets larger, the lower estimates stay in about the same range
(hundreds to low thousands with S= 50; Table II and Fig. S1, Supporting Informa-
tion). This means that a large fraction of point estimates of Ne/N can be expected to be
increasingly small as true Ne becomes increasingly large. These results do not reflect
a large systematic bias in the estimates; instead, they reflect the increasingly bimodal
pattern of the estimates as effective size increases, such that virtually all estimates are
either infinity or very small compared to true Ne.

It is interesting to note that this bimodal pattern also occurs with small-sample esti-
mates based on the true pedigree. The simulations kept track of the parents of offspring
that appeared in the samples of 50 individuals each and Ne was estimated for each sam-
ple using equation (1). With true Ne = 106, one does not expect to find any siblings in
a sample of only 50 offspring, and that was the case for 499 of the 500 replicates.
When each offspring has two unique parents, Σki

2 =Σki and inbreeding effective size
is infinitely large (cf . equation 1). The largest non-infinite estimate of Ne from parent-
age analysis that is possible with a sample of 50 offspring occurs when a single pair
of half-sibs is found; this produces an estimate of N̂e = 4950, which was the value
obtained in the 500th replicate. That is, with a sample of 50 offspring, even if parent-
age can be determined with 100% accuracy, it is impossible to obtain an estimate of
Ne that is larger than 4950 and smaller than infinity. Put another way, with parentage
analysis and Ne estimation based on standard demographic equations (e.g. equation 1),
if true effective size is very large, it is impossible to obtain an estimate of Ne that is
within several orders of magnitude of the true value unless the sample of individuals is
also very large.

Fortunately, two approaches can help mitigate this rather gloomy prospect for obtain-
ing reliable estimates of effective size and Ne/N when true Ne is large. First, all indirect
methods for estimating Ne have ways of placing confidence intervals (c.i.s) around the
point estimates; for the two moment-based methods used here, the c.i.s are based on the
parametric 𝜒2-distribution, as detailed by Waples (1989, 2006). As would be expected
for methods that are largely unbiased, most of the small point estimates for Ne = 104

and 106 depicted in Fig. 5 had upper bounds that included the true Ne. This illustrates
the importance of considering not only the point estimates but also the upper bounds of
the c.i.s. This is tricky, however, because these c.i.s never incorporate all of the uncer-
tainty associated with the estimates. For example, they do not account for uncertainty
or biases associated with violations of simplistic model assumptions (e.g. discrete gen-
erations, closed populations and selective neutrality), nor do they account for biases
associated with the nearly impossible task of achieving a completely random sample
from a large wild population. Although model misspecifications like these were not
explicitly evaluated (collectively, they encompass an enormous parameter space), the
likely consequences are easy to predict. Given that, when true Ne is large and all model
assumptions are met, a large fraction of point estimates will be orders of magnitude
smaller, even modest downward biases in the estimates could easily cause the upper
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c.i.s to fall below the true Ne. Finally, c.i.s around N̂e cannot be directly converted to
c.i.s around Ne/N without also explicitly considering uncertainty in the estimate of N
and the covariance of Ne and N, but that is seldom done.

To the extent that it is feasible, one can increase precision by obtaining more data
(larger samples of individuals and genetic markers). Although the number of individ-
uals and loci included in the simulations were comparable with those actually used in
many of the studies that have reported tiny Ne/N (summarized by Hauser & Carvalho,
2008), it is now relatively easy to obtain many thousands of SNPs even for non-model
species, and considerably larger samples of individuals are possible for some species.
With true Ne = 106, increasing sample size from S= 50 to 200 improved performance of
the estimators somewhat (fewer estimates were in the hundreds), but the distribution of
N̂e was still strongly bimodal; over half the estimates were infinite and most of the finite
estimates were <104 and would produce estimates of Ne/N in the range 10−2 –10−3

[Table II and Fig. S2(b), Supporting Information]. In some cases, very large samples
(up to 5000 individuals or so) can be collected from marine species (MacBeth et al.,
2013). With true Ne = 106, increasing sample size by two orders of magnitude (from
S= 50 to 5000) also shifted the bulk of the finite estimates by two orders of magnitude
(from 102 –104 to 104 –106), with most of the remainder still being infinite (Table II).
Under these conditions, no estimates for either method were as much as two orders of
magnitude lower than the true effective size. When modelled Ne was infinitely large,
however, the distribution of estimates using S= 5000 remained unchanged (Table II).
This means that, even with very large sample sizes, tiny estimates of Ne/N can occur
if true Ne is large enough.

Memory limitations precluded simulating >100 SNP loci with Ne = 106, but results
for 1000 SNPs and Ne = 105 also produced fewer estimates in the hundreds and slightly
fewer infinite estimates [Fig. S1(a), Supporting Information]. Still, about half of the
finite estimates were in the low thousands, which would produce estimates of Ne/N in
the range 10−1 –10−2.

It is important to note here that all of the simulations evaluating performance of
genetic estimates of Ne used discrete generations and ideal populations in which
Ne =N. Even so, all scenarios with large true Ne produced a large fraction of estimates
of Ne/N that were orders of magnitude too small. But Ne will generally be <N in
real populations, even without invoking extreme variance in reproductive success
(Frankham, 1995; Palstra & Fraser, 2012; Fig. 3). If, for example, Ne = 106 and
N = 107 (so that true Ne/N = 0·1), then the ∼50% of estimates of Ne in Fig. 5(c) that
fall between 102 and 104 would produce estimates of Ne/N in the range 10−3 –10−5

rather than 10−2 –10−4.
In summary, genetic methods for estimating contemporary Ne are sensitive to a sig-

nal proportional to 1/Ne, which is very small for populations with large true effective
sizes. As a consequence, when true Ne is large and only moderate amounts of data
are available, the distribution of N̂e becomes strongly bimodal, with most estimates
either infinitely large or in the hundreds to low thousands. This distribution of finite
N̂e estimates does not appreciably change regardless how large Ne gets. This means
that when true Ne is ≥106 and true Ne/N is ∼0·1, a large fraction (perhaps up to 50%)
of the point estimates can be at least three to five orders of magnitude too small. The
larger the population, the greater the scope for downward bias in the subset of finite N̂e
values, even if the overall method is not biased. Using much larger samples (thousands
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of individuals) and paying close attention to the upper bounds of confidence intervals
can help to mitigate (but not eliminate) this problem.

DISCUSSION

Accounting for iteroparity and overlapping generations shows that plausible patterns
of change in age-specific fecundity cannot by themselves produce tiny Ne/N ratios
(Ne/N ≤ 10−3); these are only possible if individuals of the same age and sex have
greatly over-dispersed variance in reproductive success (Φx ≈ 103 or higher). This in
turn requires that only a small fraction (Np/Nx ≈1/Φx) of potential parents within an
age group is successful at producing offspring in any given year. This is similar to the
conclusion reached by others who have evaluated the SRS hypothesis using simpler
discrete-generation models, although opportunities for tiny Ne/N are reduced by about
one order of magnitude if different randomly chosen parents are sweepstakes winners
each year.

To date, little published information has been available regarding performance of
estimators of contemporary Ne when effective size is very large. The largest effective
sizes evaluated in some key papers were 100 (Nei & Tajima, 1981), 200 (Wang, 2009),
500 (Waples, 1989) and 1000 (Wang & Whitlock, 2003). Waples & Do (2010) and
Gilbert & Whitlock (2015) evaluated Ne up to 5000 and Ovenden et al. (2007) and
MacBeth et al. (2013) simulated some scenarios with Ne = 104, but this is still orders
of magnitude smaller than effective sizes that might characterize large marine popu-
lations. This range was expanded to arbitrarily large populations in the present study.
Simulated data using samples of individuals and genetic markers comparable to those
used in most published estimates of tiny Ne/N demonstrate that, when true Ne is large
(105 –106 or higher), the distribution of N̂e is strongly bimodal, with roughly half of the
estimates being infinitely large and most of the remainder being several orders of mag-
nitude smaller than true Ne. If true Ne is large, genetic estimators have a characteristic
sweet spot where almost all of the finite estimates land. For S= 50 and 100 diallelic
loci, the range of this sweet spot is the hundreds to low thousands, and this range does
not change appreciably no matter how large true Ne is (Table II and Fig. S1, Support-
ing Information). Thus, this sweet spot also represents a blind spot with respect to the
true Ne. Huge increases in sample size shift the sweet spot to higher N̂e values (up to
104 –106 for S= 5000), but again this distribution of N̂e remains static regardless how
large true Ne is (Table II).

These results mean that tiny, genetically based point estimates of Ne/N in large marine
populations are expected to be quite common, even when the true Ne/N ratio is normal
(c. 0·1 or higher). Notably, this pattern of spuriously low estimates of Ne/N agrees
almost exactly with the three characteristics Hauser & Carvalho (2008) identified as
typical of empirical estimates for marine species: first, most point estimates are in the
hundreds or low thousands; second, resulting estimates of Ne are two to five orders
of magnitude lower than estimates of N; third, the estimated Ne/N ratio decreases as
population size increases (Fig. S1, Supporting Information). Of course, this does not
mean than any particular published estimate of a tiny Ne/N is wrong. The fact that
false positives for tiny Ne/N are expected to be quite common when true Ne is large,
however, argues for considerable caution in interpreting genetically based estimates for
large populations.
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Results presented here have several practical implications for evaluation of estimates
of Ne/N that are unusually small. First, this scenario is likely to produce publication
bias toward small estimates, as noted by Hauser & Carvalho (2008), but the problem is
not simply that small estimates of Ne/N are interesting and provocative, while normal
estimates with N̂e ≈ N̂ are boring. Because N̂e is strongly bimodal for large populations,
almost no estimates will produce a value of N̂e close to the estimated census size; they
will nearly all be much too small or infinite. Often, researchers are reluctant to report
infinite point estimates because all real populations must be finite. These infinite point
estimates, however, contain useful information; they are best interpreted as very large,
and they will be rare if true Ne is small and even moderate amounts of data are available
[Fig. 5(a)].

Because a large fraction of false-positives for low Ne/N can be expected when using
genetic methods to estimate effective size in large marine populations, careful attention
must be paid to the upper bounds of c.i.s and the full range of Ne/N that are consistent
with the point estimate. As noted above, however, the c.i.s around genetically based
estimates of effective size will seldom include all the uncertainty associated with the
estimates. In particular, because the genetic signal is proportional to 1/Ne, c.i.s are
non-linear and asymmetrical, being much larger on the high side of the point estimate.
One consequence of this is that any downward bias in the point estimate will have
a disproportionately large effect on the upper bound of the c.i., which could (falsely)
rule out the possibility that true Ne is very large. Gradually, some of the potential biases
associated with violations of simplistic assumptions of genetic methods for estimating
contemporary Ne are being critically evaluated (Waples & Yokota, 2007; Waples &
England, 2011; Neel et al., 2013; Waples et al., 2014; Gilbert & Whitlock, 2015; Wang,
2016) and it will be important to carefully consider these results in interpreting low
estimates of Ne/N.

Analysis of the simulated data used the moment-based temporal and LD methods,
which are easy to calculate and which have been among the most commonly used
methods to generate tiny estimates of Ne/N (Hauser & Carvalho, 2008; Hedgecock
& Pudovkin, 2011). Likelihood-based or approximate-Bayesian-computation (ABC)
methods (Wang & Whitlock, 2003; Tallmon et al., 2008) have the potential to reduce
biases and increase precision, but they have not been rigorously evaluated with very
large populations; furthermore, most require one to specify an upper limit to Ne, which
can be problematical for very large populations. Although the combined estimates
computed here as a simple, unweighted harmonic mean of N̂e for the temporal and
LD methods did not perform much better than the LD method alone (Fig. 5 and
Fig. S1, Supporting Information), this idea merits more detailed study, as the two
estimators are largely uncorrelated for small to moderate Ne (Waples, in press) and
hence should provide largely independent information about effective size. The
most robust results can be expected when multiple methods produce comparable
estimates (Hauser et al., 2002). Unfortunately, results for parentage analyses based
on the known pedigree show that, even if parents of each offspring can be assigned
with complete certainty, relatively small samples from very large populations will
not provide much useful information about Ne unless effective size is very small
compared with N. This means that the single-sample sibship method (Wang, 2009)
is not likely to be useful for evaluating populations with large Ne, although it could
help confirm events of SRS in which the individuals sampled could include many
siblings.
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Increasing the number of genetic markers can help improve precision, but only to
a certain degree (Table II and Fig. S2, Supporting Information). An important caveat
applies to evaluating the benefits of using many thousands of genetic markers, as it is
now possible to obtain even for non-model species. In a computer it is easy to sim-
ulate arbitrarily large numbers of loci that assort independently and hence provide
non-redundant information (up to 1000 such loci were modelled here). In the real
world, however, loci must be packaged into a relatively small number of chromosomes,
and physical linkage creates dependencies among the markers that reduce the overall
information content. This means that increasing the number of loci by a factor of 10 [as
in Fig. S2(a), Supporting Information] will not increase precision by the same propor-
tion. This is an important topic that merits more rigorous study, but preliminary results
(Jones et al., 2016; Waples et al., 2016) indicate that, for the LD method, the effective
number of loci (in terms of information content) can be much lower than the actual
number. Therefore, although using large numbers of SNP markers will increase preci-
sion (Hoffman et al., 2014), this by itself is unlikely to solve all problems associated
with estimating Ne in large populations. A rigorous evaluation of this issue will require
conducting simulations using linked markers in populations with very large Ne.

Empirical studies to test the hypothesis of tiny Ne/N are tricky, for several reasons
apart from statistical behaviour of the genetic estimators. Results presented above
demonstrate that, after accounting for life-history traits typical of many marine species
(iteroparity and long adult lifespan), it remains that case that tiny Ne/N require some
type of SRS, whereby only a small fraction of adults successfully reproduce in any
given season. The converse is not necessarily true. Not all types of sweepstakes repro-
duction produce tiny Ne/N, it depends on the spatial and temporal scale on which SRS
occurs. In some cases, SRS can produce chaotic genetic patchiness (Johnson & Black,
1982; Broquet et al., 2013) without permanent population structure or small overall
Ne. Selkoe et al. (2006) and Buston et al. (2009) suggested that any effects of SRS
are likely to be ephemeral and disappear when individual cohorts are integrated into
the population as a whole. Whether this is true, however, depends on the nature of the
SRS. As demonstrated above, if entire cohorts of a long-lived species are consistently
produced by SRS (e.g. if Φx is consistently very high for all ages of adults), then Ne/N
can be very small (Ne/N ≈ 1/Φ; equation 10).

The concept of Ne applies most directly to a full generation in a single, completely
isolated population. Life histories of many marine species pose a major challenge in
this regard. Many marine fishes (and some marine invertebrates) are highly vagile as
adults and many have long larval stages that provide opportunities for dispersal. As
a consequence, marine populations are often ill-defined spatially and in at least some
cases better fit one or two-dimensional isolation-by-distance models with continuous
distributions than they do models with semi-discrete subpopulations. If one wants to
draw inferences about Ne and Ne/N for a metapopulation rather than a single isolated
population, then spatially varying productivity could affect the result (as proposed by
Turner et al., 2002), but that scenario is beyond the scope of this paper to consider in
detail.

Hedgecock (1994) proposed some tests of the sweepstakes-reproduction hypothesis,
and these have been discussed by many subsequent authors (Selkoe et al., 2006; Hauser
& Carvalho, 2008; Taris et al., 2009). One of the predictions is that genetic diversity
within larval cohorts should be reduced (and LD increased) compared with adults. As
subsequently noted by Hedgecock & Pudovkin (2011), this qualitative prediction is
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tricky to evaluate. Robust tests must await a quantitative treatment that fully accounts
for all the sampling issues involved and the different expectations for different measures
of genetic diversity (e.g. number of alleles v. heterozygosity). Another of Hedgecock’s
(1994) predictions, that genetic differences among cohorts should be large compared
with samples from the adult population, has more direct relevance to evaluation of
Ne/N ratios. In iteroparous species, if effective size actually is relatively small, then
the magnitude of allele frequency differences among cohorts can be used to estimate
Ne, using the method of Jorde & Ryman (1995) and extended by Jorde (2012).

The most robust way to quantitatively evaluate the hypothesis that SRS leads to tiny
Ne/N ratios is to implement a sampling programme that combines both spatial and tem-
poral replication (akin to the Lagrangian and Eulerian frames of reference discussed
by Hedgecock & Pudovkin, 2011). The spatial scale should be broad enough to iden-
tify population boundaries (if they exist) and to account for effects of immigration.
Providing the appropriate temporal dimension to the data collected is likely to be more
challenging, because at least two temporal components must be considered. First, many
marine species spawn over extended periods of time (and tropical species can spawn
throughout the year), so it is important to have a way to integrate all reproduction
events across each season. Second, the strongest evidence for tiny Ne/N attributable
to sweepstakes reproduction will be to demonstrate temporal stability of geographic
patterns across multiple generations. If these patterns are not dynamically stable, the
signal could be one that reflects ephemeral patterns of reproduction of local groups of
parents (chaotic genetic patchiness) rather than small effective size of the entire popu-
lation across a generation. Evaluating this will be difficult in long-lived species unless
historic samples (e.g. archived scales) are available.

Finally, point estimates of Ne and Ne/N for marine species can be evaluated in the con-
text of the species’ life history and other genetic analyses, as suggested by Hedgecock
& Pudovkin (2011). Ne/N cannot be tiny unless individuals are capable of produc-
ing at least thousands of offspring that survive to age at maturity, so tiny estimates for
species with low fecundity would be unlikely to be valid. If Ne of a large marine species
really is in the hundreds to low thousands and this pattern has persisted through time,
it should be reflected in low overall genetic diversity, shallow coalescent structure and
a star phylogeny of DNA sequences.

I appreciate the invitation to prepare this manuscript for the symposium edition of the Jour-
nal. I thank S. Sogard for useful information about BOFFFFs and M. Hare, L. Hauser and two
anonymous reviewers for useful comments on an earlier draft.

Supporting Information

Supporting Information may be found in the online version of this paper:
Fig. S1. Changes in the frequency distribution of estimates of effective population

size (N̂e) for simulated data as true effective population size (Ne) increases: (a) true
Ne = 104 ( ), (b) true Ne = 105 and (c) true Ne = 106. , The standard temporal
method, computed for samples taken three generations apart; , the linkage dis-
equilibrium method; , the harmonic mean of the two estimates; ‘inf’= infinity.
Each set of 500 replicate populations used 100 diallelic (single nucleotide polymor-
phism, SNP) loci and S= 50 individuals sampled. Note that the distribution of finite
estimates remains essentially unchanged as true Ne increases.
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Fig. S2. Frequency distribution of estimates of effective population size (N̂e) for sim-
ulated data using the linkage disequilibrium method. (a) Results for 100 ( ) and
1000 ( ) diallelic (single nucleotide polymorphism, SNP) loci, S= 50 individuals
sampled and true Ne = 105 ( ) and (b) results for S= 50 ( ) and 200 ( ), with
100 SNP loci and true Ne = 106. ‘inf’= infinity.
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